Tantalum Nanoparticles Reinforced PCL Scaffolds Using Direct 3D Printing for Bone Tissue Engineering
نویسندگان
چکیده
Polycarbonate (PCL) has been widely used in tissue engineering, but its hydrophobicity and low biological activity limit further promotion application. By adding nanoparticles, the hydrophilicity of PCL can be improved. In this study, different amounts Ta (1–10%wt) were added to PCL, then their mechanical properties studied vitro . XRD found that 5%Ta-PCL highest crystallinity. At same time, cell experiments CCK8, adhesion, osteogenic differentiation, osteogenesis related gene expression showed enhance while 5% Ta-PCL best properties. This composite tantalum could have a clinical potential for orthopedic implants.
منابع مشابه
Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing.
Nowadays, there is a significant need for synthetic bone replacement materials used in bone tissue engineering (BTE). Rapid prototyping and especially 3D printing is a suitable technique to create custom implants based on medical data sets. 3D printing allows to fabricate scaffolds based on Hydroxyapatite with complex internal structures and high resolution. To determine the in vitro behaviour ...
متن کاملEnhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering
Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements, i.e., certain standards in terms of mechanical properties, surface characteristics, porosity, degradability, and biocompatibility. The optimal design of a scaffold for a specific tiss...
متن کاملAligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملBiodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering.
Native bone extracellular matrix (ECM) is a complex hierarchical fibrous composite structure, resulting from the assembling of collagen fibrils at several length scales, ranging from the macro to the nanoscale. The combination of nanofibers within microfibers after conventional reinforcement methodologies seems to be a feasible solution to the rational design of highly functional synthetic ECM ...
متن کاملHydroxyapatite Whisker Reinforced 63s Glass Scaffolds for Bone Tissue Engineering
Bioactive glass (BG) is widely used for bone tissue engineering. However, poor mechanical properties are the major shortcomings. In the study, hydroxyapatite nanowhisker (HANw) was used as a reinforcement to improve the mechanical properties. 63s glass/HANw scaffolds were successfully fabricated by selective laser sintering (SLS). It was found that the optimal compressive strength and fracture ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Materials
سال: 2021
ISSN: ['2296-8016']
DOI: https://doi.org/10.3389/fmats.2021.609779